-WORK IN PROGRESS WEBPAGE-
Mini-ELF Overview
The Mini-ELF (ExoLife Finder) is a new ground-based telescope concept able to directly image Earth-size water-bearing planets within 3 parsecs from Earth.
This new large-scale telescope is a novel hybrid telescope-interferometer design for the optical and infrared (IR) spectrum that is scalable in size.
High-contrast direct imaging of exo-Earths is the holy grail of optical-IR remote sensing that will allow the measurement of biosignatures and exoplanetary reflected light. Inversions of such light curves will yield wavelength-dependent albedo surface maps of potentially unambiguous signals of exoplanetary life, from single-cell photosynthetic organisms to advanced life-forms.
Mini-ELF is worlds 1st large-scale telescope that can scale in size, which makes it unprecedentedly low cost and faster to build compared to traditional large-scale telescopes like the TMT or Keck I & II.
Mini-ELF is a ground-based telescope consisting of fifteen identical 0.5m off-axis telescopes assembled on a common pointing structure. The primary mirror segments have identical off-axis parabolic shapes, and are served by corresponding adaptive secondary mirrors, each creating a diffraction-limited image with extremely high-accuracy wavefront control.
Mini-ELF gives astronomers new tools for exoplanetry research, paving the way for much larger full-size ELF telescope (ExoLife Finder), which will be large enough to yield a statistically valuable census of life on exoplanets within dozens of lightyears from planet Earth.
The figure to the left (S. V. Berdyugina, J. R. Kuhn) demonstrates how it's possible to create surface maps of nearby exoplanets using an inversion technique. Seeing oceans, continents, quasi-static weather, and other surface features on exoplanets may allow us to detect and characterize life outside the solar system, a remarkably exciting discovery for humanity.
Mini-ELF is currently being manufactured and designed by scientists and engineers from the Institute of Astrophysics of the Canary Islands (IAC), the University of Hawaii, and the University of Lyon.
helping understand our place in the universe.
Mini-ELF is a pathfinder telescope, paving the way for exoplanetary science enabling to further characterizing exoplanets by generating surface maps. To learn more about we detailed maps of exoplanets, see the paper archive here.
Some of the Mini-ELF team have simulated examples of an exo-Earth with an ice polar cap, ocean, and continents with deserts and vegetation. An Earth-like map is used to simulate reflected light curves in four passbands within 0.4–0.8 m. The recovered map is a three-color image inferred using light-curve inversion. Spectra of two surface patches reveal vegetation “red-edge” and a typical desert composition (on the right). Mapping detailed refenced here.
This figure shows that as we scale MiniELF the number of exoplanets we'll be able to do research on increases significantly.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
MINI-ELF Scalable Structural Design
Mini-ELF utilizes a unique structural design to significantly reduce 1) the time to build of the telescope, 2) the moving mass and overall weight and 3) the dynamically controlled stiffness of the telescope.
Mini-ELF is an incredibly light
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Tensegrity Technology
MiniELF uses a new type of dynamically controlled tensegrity “bicycle wheel-like” structure that combines pre-tensional and compressional mechanical elements. This tensegrity structure helps support the primary mirrors and significantly reduces the weight and overall and cost.
Tensegrity designs are often used in large bridges and bicycle wheels.
All of these features lead to a new type of extremely large aperture telescope that has extraordinary wavefront control and a small moving mass in comparison to Keck-era optical systems.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
MINI-ELF Optical Design
What are the simple heading main elements that make up this innovative optical design?
1. Remove Scattered Light (Make exponential progress on the exoplanet signal to noise problem.)
2. Synthetic Coronagraph
3. Mirror Manufacturing (glass+EAP)
4. Deep Neural Network
Improve Signal to Noise
Reduce Weight
Reduce Manufacturing time.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Off-Axis Interferometer Design
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Breakthrough lightweight Mirror Technology
Extremely Thin Mirror Glass
Presently the polishing cost of telescope mirrors is about $400,000 USD per meter squared ($400K/m2) using conventional abrasive polishing technologies. We know from decades of building ground-based telescopes that their cost, including the tracking system and optical payload, scales approximately linearly with the moving mass of the system and its light-collecting area. The larger the mirror the larger the cost.
With additive (3D printing) technologies we can create an active structure on smooth fire-polished window glass that creates “stiffness” with software with considerably less mass than the glass-steel backing structure of, e.g., Keck-era mirror segments [11]. Current glass technologies allow patent-pending “live-mirrors” (Fig. 3) to be as large as 8m in size with an area-mass-density that approaches 1/10th of traditional large telescope mirrors.
We propose to develop a new and interdisciplinary technology for creating extremely lightweight diffraction-limited meta-material-based optical systems with exceptional optical quality spectacularly lower cost and production time.
The novelty is to replace classical rigid and heavy optical mirrors with “live” and light dynamic optoelectronic systems consisting of a thin optical fire-polished glass sheet actively “live” supported by many-degree-of-freedom force-actuators/sensors integrated and miniaturized via additive manufacturing and 3D printing.
Nano Actuators "Live Mirror"
Develop a “deterministic non-contact glass slumping”(DNCGS) technique that generates optically accurate aspheric shapes from commercial fire-polished “float” glass with extremely smooth optical surface which is never abrasively polished or surface-contacted. The novelty is to replace classical (very slow and consequently expensive) abrasive glass polishing (shaping) with inexpensive non-contact deterministic slumping of fire-polished thin glass. This yields an aspheric shape that is within a few microns of the desired precisely-shaped optical surface.
Achieve active shape control with many- degree-of-freedom force actuators and sensors created by an additive 3D-printing-based technology that relies on an optimized electro-active polymer (EAP) systems in a sandwich of DNCGS glass surfaces. This creates a novel hybrid meta-material with superior stiffness-to-density ratio properties.
Such hybrid structures will require a fast and efficient optical calibration technique. Our “3D-printed” force actuator and sensor system works in combination with an optical metrology and Kirchhoff-Love solver control algorithm, integrated into a highly-parallel information network system allowing dynamic maintenance of a desired large-scale single mirror shape (e.g., on- and/or off-axis parabola for example).
Default Title
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Mirror Support Structures
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
ELF Software Control & Deep Neural Network
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Mini-ELF Science
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
For questions or to enquire about partnerships email:
Mini-ELF Location
Mini-ELF will be located at the beautiful Teide Observatory on Mount Teide of the Canary Islands. Mount Teide is located in the Atlantic Ocean at 2,390 metres (7,840 ft) above sea level and is the perfect site to host Mini-ELF.
We're very thankful to the Instituto de Astrofísica de Canarias (IAC) who has been a close and important partner in the Mini-ELF consortium.