Telescopes

The PLANETS Telescope


planets-telescope

The PLANETS Telescope is a pathfinder project for even more sophisticated instruments that will find life and civilizations on nearby exoplanets. The PLANETS telescope will be the world’s largest off-axis telescope (1.85 m) for night-time astrophysics and planetary science. The name is an acronym for,  Polarized Light from Atmospheres of Nearby ExtraTerrestrial Systems.

Learn More

The ExoLife Finder (ELF)


elf-telescopeThe ExoLife Finder, or ELF for short, will be the world’s first telescope to create surface maps of the nearby exoplanets, including Proxima b.

ELF is a “Colossus-lite” formed from a circular array of sixteen 5 meter mirrors. ELF uses the thin “printed-mirror” technology the Colossus telescope depends on, and image-domain phasing of each off-axis parabolic segment to create a single diffraction-limited image. ELF has a total diameter of about 40m and is large enough to begin a dedicated program of Rotational ExoPlanet Imaging.

The Colossus


colossus-telescopeThe Colossus Telescope will be the world-largest optical and infrared telescope optimized for detecting extrasolar life and extraterrestrial civilizations. It consists of 58 independent off-axis 8m telescopes which effectively merge telescope-interferometry concepts, yielding 74m diameter effective resolution.

The primary consists of 58x8m off-axis parabolic primaries. The secondary structure is less than 5m in diameter with 60 independent 0.5m optics. Thus, every primary is served by its own secondary which bring light into one Gregorian focus.

Each secondary mirror is illuminated by one primary mirror segment and becomes its steering and phasing element. In this way each beam is combined coherently at the Gregorian focus of the larger, two-axis tracking, primary parent optics without interferometer delay-lines.

This optical system achieves the full angular resolution of the parent while efficiently matching the “softness” of the mechanical structure to the atmospheric piston phase fluctuations.